Chapter 2

T'he Real Number System

2.1 Introduction

The study of the main concepts of real analysis, namely, convergence, continuity, differ-

entiability, integrability, etc., has its basis on an accurately defined number-concept—

more specifically, on the concept of the real number systern. Our approach. in the

present text, is not to give a formal method of construction of real numbers. Instead,

we shall exhibit a list of fundamental properties which will characterise the system of
real numbers and use these properties in learning the tools of real analysis.

We assume that our student-readers have the initial acquaintance of the primitive

systems like the set N of natural numbers, the set Z of all integers and the set Q of

all rational numbers (i.e., numbers of the form E, where p and g are integers, g # 0).

Addition and multiplication of the elements of these sets will be supposed to be known.

Our approach in introducing real number system is, what we call, aziomatic: we
assume that:

There exists an ordered field R which is complete (i.e., which has the

least-upper-bound property). Further, R contains Q as subfield. The
members of R are called real numbers.

We shall discuss the existence-statement in considerable details in the following
sections.

Richard Dedekind (1831-1916), however, made a completely different approach:
He introduced the concept of cut (Dedekind cut) of rational numbers and thereby
generated not only real rational numbers but also new type of numbers called real
irrational numbers. Finally he showed that the section of real numbers does not lead

to any further generalisation (Dedekind’s theorem). (See Appendix at the end of
this chapter 2).
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h n # m, n’ # m’; that is, distinct elements in N have

. 's Axioms:
First Approach: We begin with Peano’s A3 tegers and then fi : N, wi
ot I ' [ntroduce Z. the set of all intege Nally P4. For each pair n,m € I, wit
of Mathematical Induction. e ers where the dEHDmIHﬂIDr 1n d]ﬁ‘ErEnt distinct SUCCEeSSOrs.
€ Mand (c)ne M =>n'€ M, then M = N

io of two intég

mbers form the system Q of rational numberah\ ps. If (a) M C N: (b) 1
| ’ is known as the Principle of mathematical induction. This

a rational number &s the rat
The last axiom PS5

gero. The totality of all rational nu Aivolis _
ch: Define a Field—an ordered field. Define : rchlmedlan p Tes ) [ , ottt sacke T ulin g
Another Approaci .. Property and then Q & defined as g Top, principle is an important tool in many mat ematical proofs. often appears in the
erty, Density property: Countability FroP= - ~y and Countability pro Orde'ﬂ following alternative form:
4 rchimedian property perty, R ) j it .
) Alternative form of the principle of mathematical induction
about n € N, then P(n) may be true for some values of n

S P ade to correspon ique point on a directed Fivia ("Q’ ]
Rational Numbers). Geg, If P(n) is a statement
il and not true for some other values of n, e.g.,

: ' s is that Q 1s not ,
oducing Rationl s ¢ order Comﬂq' for n = 1, P(1) is true, while P(n) is not true for any n>1,n € .
| formulate the principle of mathematical

ﬁdd- o‘beg,nr:-*- Density property.
3 e d to a uni

What is most important t ;
© Tem let P(n) be the statement ‘n? = n’. Then

rational number IS
metrical Representation of

in these two approaches of intr
this notion will be explain ~d in due course. | it oo v el e
I induction in the following language:
1 For each n € N, let P(n) be some statement about n. Suppose that
Section I: umbe ers and Rational N e | 1. P(1) is true.
oo & Natere’ = = umbEE 9. For every k € N, if P(k) is true, then P(k+1) is also true.
. ’ . Then P(n) is true for alln € N.
2.2 The Set Nat Natural Numbers: Feanocs AXIOmS Take M = {n:n € N and P(n) is true}. Then M C N. Then the conditions (b)
iti d (2) stated above. The
e assume familiari * - . and (c) of P5 correspond exactly to the conditions (1) an
::h he usual ari hf."' ﬁthowthe M * H?IU;ZI;UIHE?&I: N;t-{lf!- “ 57'41 %6, -], abl‘ conclusion M = N in P5 corresponds to the conclusion ‘P(n) is true for all n € N.
&umh;g a:d m:;zhemz;un :;lzzi Eata a:w;n;; bm- Ift:m of ‘twg Natury Observation: In (2) the assumption “if P(k) is true” is called the induction hypothesis.
relation : i = s anether (Oﬂfq In establishing (2) we assume P(k) to be true and then establish P(k + 1) 1s true. In
) fact. P(k) may not be true. For example, let P(k) : I = k + 3. then (2) is logically
can simply add 1 to both sides of P(k) to obtain P(k+1). However,

correct because we
P(1) is not true (since 1
mathematical induction to concl

= 4 is false). Therefore, we cannot use the principle of

In the following discussions we shall include three important notions:
ude that n = n + 3, for all n € N. [See Page 51. Q.4

I. Peano’s axioms (All the known properties of natural numbers can be shown g,

e comserquences of these axdoms).
I1. Well ordering property of the system N of natural numbers. A second version of the principle of mathematical induction:
I11. Principle of mathematical induction which is a part of Peano’s axi It may happen that the statement P(n) are false for certain natural numbers,
O T | T — s but they are true for all n > some particular natural number m. The principle of
We take the statenéits P; 1o P 28 our ﬂR;UHI; feallo ":: , natural numbers, mathematical induction can be suitably modified in such a case. m is the basis in this
5 . eano’s arioms or Peano’
WJiWJJ: m' case,
PL 1N thatis N i _ Statement: Second version of the principle of mathematical induction:
i, + V18 a non-empty set and contains an element which we designate Let m be a fized natural number.
P2. For cach element exists Let P
> 2 € N, there exi , | t P(n) be a statement for each natural number n = m.
of n. ¢ a unique elemnent n’ € N, called the successor =
. Suppose that
- For each element ne N, n/ :
2 < N, 1. i i 1. The statement
N # 1; that i, 1 is not the successor of any element i et Fim) @it
IA statement means an expression which has a truth value, i.e., either it is true or false
- ‘
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5 For all k > m, the truth of P(k) implies the truth of Pk +1).

T?u:;! P(n) mwfaraﬂnz m.

We have also another useful form of the principle of mathematical ing
as the Second Principle of Induction [see Example 2.3.7, Page 48]. uct;
[1. Well ordering principle on N: A fundamental property of t},
mbers is what W€ es

call well-ordering property of N. It states:
Every non-empty subset of N has a least element
nt,

This means: IfSisa subset of N and if S # &, then there ezists q
n Efﬁrne

Ju{_‘h that m 'c_: k,
Explanation: 115 the least element of N C N. 2 is the least of N
= 0

1 < 2,3 is the least element of N — {1,2} and 1 < 2 < 3 etc

Important Deductions

A. If we assume the truth of well-orderi s
mn o
induction follows: g principle, the principle of maq

The Principle of Mathematical Induction states:
Let M be a subset of the s |

ystem N of natu ;
1. 1€ M and ral numbers with two conditions;
2. Foranyne N, ifne€ M, then (n+1)e M
Then the principle states: M = N |

Proof. Subject Sy

the contrar;icha:;{jﬁj’le conditions (1) and (2) we shall prove that M = N

ordering principle F j N. Then the set F = N — M is not empty _S . Supmh

S i hypgt}i)ﬁis . asl a least element m (say) (note that m € F an[?:i by the we

R el el Lal € M, som > 1 (no integer in N can be < 1). B tso Tn'g |

such th atural number and m — 1 < m. Since m is th - But this impli
1 that m € M, we conclude (m—1) e M e least natural numbe

assumption that F i

e oo Hiunk :Enm emn tpt}’ and by well-ordering principle m € F. The contr&
cannot accept ass : i

empty so that M = N pt the assumption. Therefore, we must have Fs

B. We shall now ded
- uce a l . . " o
TR well-ordering principle using the principle of mathematical

for all k € 5; m is then called the least element of S e

ﬁ{l}CN_f
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Well-ordering Principle States: Every non-empty subset § C N has a least

element.
Proof. Assume t

element. We shall
hat S has a least element

hat S is a non-empty subset of N and suppose that S has no least
prove that this supposition leads to a contradiction and we can then

infer t proving the well-ordering principle.
We construct M S N
M={z€N:I<:uforeachaES}.

of trichotomy, M N g =¢. Now, 1€ 5; otherwise 1 would be the least
ES,a}IandsﬂleM.

foreacha € S. Ifp+
d be the least element of S, in contr

By the laws
of §. Hence for each a

M; thenp < a
Jarger than p woul
no least element.

1€ S, then p+1, which is the
adiction to

element

Now assume p €
first natural number
our assumption that S has

Thusp+1¢5‘andsop+l{aforeachaES.
Hence, p+1 € M. Thus we get two conditions: 1 € Mandpe M implies p+1€ M.

Hence, by the principle of mathematical induction M = N. But MNS =¢ and so
S = ¢, which is a contradiction. Therefore, S must have a least element.
Conclusion from the two deductions A and B:

Well-ordering principle for the system N is logically equivalent to the principle of

mathematical induction in the sense that any one of them can be deduced, if we assume

the other.

2.3 Solved Examples:

(Problems on Principle of Mathematical Induction)

Example 2.3.1. Prove the formula: For cach n € N, the sum of the first n natural

numbers 1s given byl+2+3+---+n=w.

Solution: Let S be the set of all n € N for which the formula is true. If n = 1, then we

have 1 = 2312 50 that 1 € 5.

Next, we assume that k € S, i.e., we assume that

1 43484tk k(k;”.
Add (k + 1) to both sides; we then obtain
(1+2+3+---+k)+(k+1)=——~—k(k+1) + (k+1)

k+1)(k+2
= ( )2( ) (This is the formula for n = k+1).

il
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hat it is true for n = 1, since

Thus, if k € S, we have verified (k+1es

( il ( )( . .

hence the formula holds forall n e N. B g
| = k, then
¢ is true for n *;

jution: To establish this formula, we see U
Sg Ut -

PAF e or eq )‘ & i '+

incquaiity
1 3 ot
Solution: Let S be the s [CH 1g4
the set of all n € N for which the inequality 1 ing (k +1)? to both sides, %e o
fps e d o 1 1 Then adding kk+1D@E+1D) |k 4 1)2
4 9 +;if:.2—;hﬂldﬂ. 12+22+32+...+k2+(k’+1) = 6
=1, then & <2 1is true so that S = 1 (k4 1) K2k +1) +6Ck+ 1)]

(k +1) (2K + Tk +6)

Il

| =] = | =

N .
ext we assume that k € § and we wish to infer from this assum

Thusl+%+$+---+fg52-—;{:(assumed)
(k + 1)(k +2)(2k +3),

—

Adding (—kfﬁ: we obtain :
Lo — k and we have
1t ) 1 _ _ :f we assume it to be true for n
]+Z+§+'”+_.'2‘+ 1 i i i.e. thefﬂrmulﬂ.iﬂva]ldfﬂrﬂ—k.'i'l*f - :
k (k+1)* = ko % 2 o ed that the formula 18 valid for n = 1. >y
+1) already Prov 14 for all n € N (by the principle of mathematic
" Consequently, the formula is valid for
1 1 1 induction).
y 0 1 1 1 : } o 2
ko (k+ 1)2 k+1 k+1 & # (k +1)? Example 2.3.4. Prove, by induction for eachn > 2, (n+ 1)} >
: 2
=2~ e Rt k—hl-2%k-114 Solution: The inequality holds for n = 2, since (2+1)! > 2%
: :- : k(k + 1)2 : We assume that the inequality holds for some natural number k > 2. Then
g 1 . 1
T kT kkt1)? (k +1)! > 2%, (1)
1 Now,
{ 2 S h. : k
o 1 +1 1 (k+2)!=(k+2){(k+1)!}>(k+2)2, by (1)
1+Z+§+”'+kﬂ_?+(k+1)2{2_;;_,_1' >2.2% (. k+2>2),
. ie, (k+2)! > 281 e, (K+I1+1)!>2F
Thus, if k € S, then (k+ 1) € S. We also have 1 € S.
.". by the principle of mathematical induction S = N, i.e., the inequality holds for +. the inequality holds for n = k + 1, if we assume it to be true for n =k (k > 2).
all n € N. ~. by the principle of induction, the inequality holds for all natural numbers n > 2.
Example 2.3.3. For each n € N, the sum of the squares of the first n natural numbers Note: The inequality is not true for n = 1. So we start with the basis n = 2.
is given by the formula Example 2.3.5. The inequality 2" > 2n + 1 is not true for n = 1,2, but it is true for
= 3. We take the basis n = 3. We can easil ve that 2" > 2n + 1, foralln € N
n(n+ 1)(2n + 1 ” 15 1 y pro , ,
12422432 4...+n?= ( 25( ). whéren > 3.

e —————————— i —————————————
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Example 2.3.6. Given two positive real numbers x and y : prove by nductioy, | ’ ; 1.2.3 k
z — y s a factor of " — y" for all natural numbers n. | Let us assume that the statement is true for n = 1,2,3,--*, %
!
. 1 J -5 R i af. Theﬂ
Solution: The statement is true for n = 1. If we now assume that T =y is a factoy of NG k+1 3 — 5 K+l _ k1 4 phtl (Where a=3+vV5andb=3~- \/5)
r* — y*(k > 1). then | (3+ 5) +( e
=i L] k
k+1 k ko kel | — (a"+b“) (a + b) — a*b—bra
I.l--i—l _ uk'l"l = — Ty +_ry == y . -
‘ k_ ok k =(ak+b‘*‘)(a+b)—ab(a' +b )
=J:(I —y)+y(-’1‘*y)- |
=B (ak oy b") ~4 (a*’—l + b"—‘) (- a+b=6,ab=4).
k 4 bk and ok~ + b¥7! are even integers (by

By our assumption, r — y is a factor of (;r’" == y’“] and clearly T — y is a factop of |
' : i er because a o _
This is an even integ k + 1 is true whenever 1t 15 true for n =

k
e tement for n =
: : _ " —
..z —y is a factor of z¥+! — y*+! (whenever x — y is a factor of 2% — yk). | assumPtiU“}' Hence the sta
. . ) & n . . [ ) . ‘
. it follows from the principle of mathematical induction that = — y is a factop . 12,3, ;]k ond princlple of induction, the statement is true for all n € N.
7 By REE

ciple of Mathematical Induction

Prin
On Practice

z" —y" foralln € N.
Exercises for Self-

y natural num-

As a particular case, see that 11" — 4™ is divisible by 11 —4 =7 for all n € N,
matical induction to prove that for ever

1. Use the principle of mathe

Example 2.3.7. Principle of strong induction (also known as second pring;. Q
ple of mathematical induction). ber n,
Let § be a subset of N such that - N.n > 4.
(a) 1€ S and (i) 2" <n! for all n € u s —
o i) Tt W1 divisible by J
(b) If for every k € N, (iii) gntl « 14+ (n+ 1)2" for all natural numbers n = 1.
{1,2,3,--- ,k}C S, thenk+1€S. (iv) n? < n! for all natural numbers n > 4.
Then S = N. | - nprn(n+1) e N.
Proof. | () 12— 2432 — 4 (-1) 0t = (D) S5 Bk
roof. Let F =N-§. =
STopro\feF .tﬁ. (vi)_l_+i+_l_+_,.+_1._>\/ﬁ,forallneﬁ.
If F # ¢, then by well-ordering principle, F' will have a least element m (say). { Vi V2 V3 v
Since 1€ §5,1¢ F. _ Tk 1 _v’Ev‘k+1+1> k+1,i.e.,> k+1.]

As m is the least element of F and 1 ¢ F, m > 1.
All natural numbers 1,2,--- ,m — 1 (less than m) belong to S.
Then, by hypothesis (b), m € S which implies m ¢ F. This is a contradiction.

(vii) n® + 5n is divisible by 6 for all n € N, |
(Hints: (k+1)°+5(k+1) = (k* + 5k) +3k(k+1) +6 and k(k+1) is always

Hence we infer F = ¢, i.e., § = N. This proves the second principle of mathematical EVEH-]
. . ' 1 1
mdt;:tmnh | - “ (viii) % 4 21_2 R i 1-—- - for all n € N.
t # - W _ L]
s€ . is principle: to prove that for all n €N, (3 + \/5) T (3 ‘/_5-) 5 (ix) Suggest a formula for the sum of first n odd natural numbers
an even integer.
1+345+--+(2n—1)

Proof. The statement is clearly true for n = 1.

( (3 + \/5_)1 + (3 - \/5) ' = 6 =an even integer) and establish your conjecture by using mathematical induction.
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2.5 Rational Numbers and their Main Properties

ional Num},

of the form g, when p, g are integers and q # 0 18 called & Tﬂt@ f
alled the system Q Ol ratjq,

A number _
The totality of all rational numbers forms a system c N Wi
sneral, we shall take ¢ to be a positive integer, 1€ g € . With thi,
jve integer, and qE is
— 0, then the r&tjuna{

 js a positive rational number, if p is & posit
it can be :
1, be E&stly

qumbers. In
understanding, f;

negative rational number, if p is a negative integer. Howevel ifp
sumber 2 = 0 (zero of the rational number system). Taking 4 =

' - e, ZCQ.
seen that the set Z of all integers is a proper subset of Q, 1.€-

The system Q : based on its Fundamental pmperties
ional numbers:

We list below the main properties of the systein Q of rat
a field in which an Ordey

I. The system Q forms an ordered field. (e, Q@ forms

relation is defined).
II. The system Q is dense as well as Archimedean.

II1. Any member of Q can be expressed as a decimal which is eit
3=0.333")

Q can be put in one-one correspondencg
A set which is either finite or countably

her terminating (e,g
1

Lk — 9.75) or recurring (.. 3 = 0-

4
IV. The system Q is countably infinite, ie.,

with the infinite set N of natural numbers.
infinite is called a countable set. Therefore, ¢ is a countable set.

V. Every rational number r can be made to correspond to a point on a directeqd

line but the converse is not true, i.e., every point on a directed line may not
correspond to a rational number. This indicates that there are gaps between
rational numbers (these gaps give rise to the existence of irrational numbers),

V1. Q is unbounded, both above and below.
VIL Lastly, the system Q is not order-complete (In other words, Q does no obey

LUB-property)
We have, in the aforesaid list 1
| ] of properties of rati '
I Sl oo p f rational numbers, used certain terms
We begin with the first property:
Property I of Ratj
tional Numbers:
forms an ordursg ger; The system Q of all rational numbers
1. What is a fileld?
A field js
4 non-empty set F' in which two operat
ors, called addition (+) and

multiplication ()
; *fy ar
' e defined and they satisfy the following axioms k
» Known as field

|
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A. Field axioms for addition:

_ Closure property: If z € F, y € F, then their sum z +y € F.

Al
z=xz+ (y+2), foral z,y,z€F.

A2. Associative property: (r+y)+

~ Commutative property: t+y =y +2, for all =,y € F.
3 a unique element 0 (zero), called additive

A3
Ad. Existence of additive identity:
at 0+I:.’E+U=_’£‘ fDr e‘,rery:re F

ive inverse: Toeveryr € F corresponds an element —z € F

identity, such th
such that: z+4(—z) = (=z)+zx = 0.

A5. Existence of addit
(called additive inverse of x or negative of )

t, under addition F is an Abelian group.

In shor
M. Field axioms for multiplication:
y € F, then their product -y € F (in place

M1. Closure property: If z € F and

of x -y we may write zy).

M2. Associative property: (z-y)-2=z-(y-2),oralzyz€ F.
Commutative property: Z -

Ma3.
M4. Existence of multiplicative iden
1-z=z-1=2, for all z € F.

y=1y-, for all z,y € F.
tity: 3 a unique element 1 # 0 such that

Existence of multiplicative inverse for a non-zero element of F: For
1) € F such that r-x 1=z 1.z=1.

M5.
F 2 #0,3an element 7' (or
se exists for any non-zero element of F but additive

every r € I,

(Note that multiplicative inver
inverse exists for every element of F.)
~ be three elements of F, then

D. The distributive property: If x,y,
r-y+x-z (Left Distributive Law)

e (y+2) =
(y+z) 2=y T+2T (Right Distributive Law).
any one can be taken as an axiom—the other clearly

(Because of comm utative property,

follows).

2. What is an ordered field?
In order to understand the meaning of ‘ordered field’ we first define an ordered

set.
Order: Let S be a set. An order on S is a relation (denoted by ‘<’ read as ‘less
than’) with the following two properties:
(i) Trichotomy: For any two clements z,y € S citherr <yorx=yory<=<.
(ii) Transitivity: For any three elements z,y,z € S, r <yandy <z=x < 2.
[r < y may be read as ‘z is less than y’ or ‘z precedes y’. We shall write y > r to mean
zr <y (read: y > z as ‘y is greater than z’). The notation r Sy = 2 < y or = = Y]
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ich an order is defined i}

a set Sin whi |
rdered field, if
— Af:'} ﬂf“j D. (“'p nrt{lu

Ordered Set: An ordered set 8

Ordered Field: A field £ is called an @

(i) F obeys all the field axioms: 41 =~
has an algebraic structure.)

(ii" F iS all C‘.'I'dprt_-d set {ﬂ.n Drder re .
i
and Transitivity and the two compat

45, M)

Sy
\l

g 'I\.ith

' is defined on F' obeyiy,
‘v conditions namely

[Additiﬂ:’l Cﬂmpgﬁit_ b\
1

lation ‘<
bil

(i) Ifr.u.:ermdu{:,t!:t=111‘+b“:!+: _ o
1 : " <z (Multiplication h)
(iv) If r,y € F withz < yandz >0, then 22 < ¥ Eompq‘[t
Property I of Rational Numbers: i \\
5 0 n ardgfed ﬁf!d.

The set Q of all rational HHTW
. T o rational numbers P
We define addition and multiplication ol bwe m.
i

P

following way:

Additiom 2L =2"1 (q.q?egasq;é{]and s #0)
qg S qs
Maultiplication: P T (01' we write -;)
g § ¢q°8 q

With thess definitions we can verity the all the field axioms for aqy;
utive properties are satisfied. Hence Q s g

multiplication along with the distriL w
property for addition: W, t&ket

[As a sample, we prove the associative
rational numbers g. ” and E‘

5

P (T Y 2, ru+s£)_p3u+fﬁ”“+q5f
q sTul"q su qsu

(qsu#ﬂ&sq#ﬂ,b‘#ﬂﬂnd H#UJ

Again,

u qs

t r t
(-
g s u qg S u
Now we define an order on Q : If a,b € Q, then a < b, if b — a is m
itive

. erv aw Df 'I‘.I.- {I v ¢ Y 1t1

E{?‘e L oW "
[We verify law of transitivity: a < b= b—q is a positive rational number

| t t su + gqru + gst
(1_1+[)+_=ps+qr+_:ﬁ' q q
q s u qsu

b -bis it '
<c=c—b is a positive rational number.

> THE REAL N MBER SYST EM

positive
must be a positive rational pumber; 1-€« C

qb+a}+[f”bj

the sum el |
' j.e., 8 < C | s i
jonal pumber, | | s,
B ber: 1f a 18 8 positive rational number, then we write

Remember: :

ative rational number, then we write a < 0.
- bility conditions:

he two compati

N(ﬁl.‘ dlL‘C-k L
for all a,b,c € Q

b + ¢,
fora]la,bEQa.ndc;rO.

ﬂ{_b.—_:#ﬂ'fc"‘f

a.cba.ndc?U-‘:"”“C‘:bC*

Thus we have established that: |
i ' 1d
rational numbers Qisa field and this field is an ordered fie J

(order being definedasr < s, ifs—Tisa positive rational number).
--._—_-_-__-_-__ —

The system of

ik | I of Rational numbers:

property I | |
The system Q of rational number is dense as well as Archimedean. o
two unequal rational numbers

By this we mean that between any

A. Qis a dense set:
finitely many rational numbers.

a and b (a #£ b), there exist in
Since a # b, by the law of trichotomy either a < b or b< a.
ath

Let us take the case a < b. Then 3 a rational number ¢ = 73

We prove: a < ¢ < b.

Fnr,a{b=>a+b<b+b
— &P < b, ie,c<b

(by compatibility condition)

Againa<b=a+a< b+ a (by compatibility condition)

= a < k"r“ ora<ec.

it follows a < c < b.

Now we see that ezistence of one rational number ¢
—= eristence of infinite number of rational num

% lies between a and b; also d = %< lies between a and ¢ an
Thus we may obtain infinitely many rat

between a and b

bers between them.

[c = d e= Q-'S—b lies
between ¢ and b and so on. jonal numbers
between a and b]

Thus we have established that Q is a dense set.
B. Q is Archimedean: Statement: If a,b € Q and a > 0, then there exists a natural

number n such that na > b. [CH 1984%]

Proof. When (b < 0) or (b > 0 and a > b), the results holds for n = 1. Now, we

consider b > 0 and a < b. Let a = 2 and b = §, where p,¢,7,8 € N (a and b are given

i

to be two positive rational numbers).
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We assert that the natural pumber 1 e
p_ L Poprzrz-=b. My
mz._-[grr*”‘}'_ P q e

t
guments.

The existence of n is assured by these ar
oof by cuntradiction): Suppose. on the -

‘onal numbers and q < b
]

na > b.

An alternative proof (A pr lty

"Uﬂ*-‘\rrhunwimm, 1.0, ][ a ﬂ.ﬂd b Are poﬁlll

at na > b.

ey 04
exists no natural number n such tl t\
This implies that for all n € N, na <b

I (b~ is the multiplicative inverse op b)

Now, Hﬂf«:b::};m.b‘lslf).b_
= (na) bl<l<m, where m 15 any natural number Othes

J.bﬂlcmﬂ»;ﬁ—c:g. u,“l.

Thus the assumption na < b implies (na
is any arbitrary positive Fationg)
n

But 2 is a fixed rational number and -
Thus we have arrived at the following conclusion:

onal number < & fixed rational nump,

Any arbitrary positive rati
contradiction. He
Hence

which is clearly not true. Thus we arrive at a

cannot assume that Q is non-Archimedean.

Er‘
We

In other words, Q must possess the Archimedean property.
Property I1I of Rational numbers: Decinal representation of a mm
u
Any member of Q is either a Terrminaling Decimal or a Recurring N
called a Permodic Decimal). e (.h
: Thi.i' rational fraction § can be expressed as a decimal by long division
enominator b contains no prime factors other than 2 or 5, the decima] fo' ¥
terminate. Otherwise, the decimal will be recurring or periodic, i, eventuall : Er"'
of digits will repeat without end. o
This is clea jvisi
- r from the process of long division of a by b; for after the digig ;
n exhausted and zeros are carried down, only the b — 1 i " g
appear. Afte . R remainders of g
il f; r at most b — | divisions, a remainder r will appear for a second tj -
Eﬂ r ‘ ’ . . " - #
er all remainders will repeat infinitely in the same order. e

If there ure Tf.("": b‘] different remainders T14 T2y """ 4 Tn and
10r; = be +r + | = ; n T4l =1 l-’j
| 1 [ ry | (3 ],2,311“' ! )1 n+1 Ly F%
Lher 'l i ;
1 the ]J{.rIUd of 2 will consist of the digit«ﬂ ay, g, - iy |
1 1 v b 4

For example, § = 0.3333-.- = 0-3, } = 0.20, § = 0. {42857
) - ' o7+

marking the period (th ' - th |
o digit 0 | ; the dots above
is the period of terminating decimal). 5

L

= qr + | will serve our purpeg,,, i \

Cﬂﬂt’fﬂfiym A p‘.’fiUdic dﬂfl[ﬂ.ﬂl IS5 An 1
rational fraction of the form §, €&

<« B

| : 15 18

0-18= 1p0 ~ 10000

+--=7_p01 09 1

(or denumerable or eRUTTIETS

is called countably mfinite |
N onto S. We then write

ion f which maps
S ~ {1.2,3...,.n....}

set N of natural numbers)
ne coTTESPOTVAETICE between

be di.spiayed thus:

or equivalent to the

function [ which establishes a one-to-0

¢ elements of the set S Hence S can
s ={f(1),(2),f(3),---}

or S ={a,az2063 -}

S is cquiﬂuﬂl
[n this case 3 @

rmtumi number and th

nere f(k) is denoted by . ——

A countably infinite set is said to have a Cardinal number No

ht _
el if it is either a

Definit
finite set or it is a countably

ion 2. Aset S is said to be countable (or at most countable),

infinite set.
ble is called uncountable.
enumerable)

A set which is not counta The terms denumerable (or
are used in place of countable

enumerable) and nondenumerable (or non-

and uncountable respectively.

Suminary

1. A set S is said to be denumerable or countably infinite if there exists a one-to-one

function f which maps N onto S, ie., if S ~N.

(or at most countable) if it is either finite or

2 A set S is said to be countable
countably infinite.
Thus S is countable if there exists a one-to-one function f from N onto S. The

elements of S are then the images of {1,2,3,--- } which we can write as

S={f(l}vf(2):f(3)="'} or, {al'ﬂi‘ﬂ‘a‘“'}'

R ——
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s NOT agu.'ﬂﬂbff-

3 Sriﬁﬂto&umwy/

all Pg_ss;bfﬁ even positive mtfger&
j‘},ffunrfwnf : N —, E- Thq
{p-0m€ correspondence. Hﬁncede

the oneé-i
o ' | represen -
cnste. See the pietore T tation givey, beln.

. ‘ F 4
Example 2.5.1. Let E % the set 0]
ts cowndebly mnfinite and hencx counsabdle-
f(n) = 2n for each n € N ques

and ther=fore, E 1s countadly W/
n
N 1 2 8 2
- T T T
] | | |
d | - * 2
g 2 4 6 8 o

integers is countable. The required one.y,
“One

Example 2.5.2. The set Z of all

respondence f: N — Z s Con.

(ﬂ :2r4161”')'

Pictorial representation is the following:

N g 3 4 2n o 2n+1
| T
J. | 3

- 0 -1 I -2 —~1 ; n

menrtam results on countable sets because of its special importanc
EE. L L] .
fgwen separately in Chapter 3A. Three such results are given belc}w-e E
I. Every infinite set has a denumerable subset. |
II. Let A, A
1,A2.A3.... be a sequence of countable sets then their unj
10n

ac
U A, is countable.
n=]
With these results in mi
ts in mind one can
smentionied eaitice: prove Property IV of rational numbers

Property IV of Rati
tional Numbers: T
o . . : The set e
untably infinite and hence Q is a countable itOf S
: [C.H. 2006]

MBER SYSTEM

. HAPTER 9. THE REAL NU
L -
ten with dgnumlnmf

pe the set of all rational numberag which can be writ
umbers 18 n E.. Now consider

n=1

1 2 2 3 3
+—-1_—‘|‘+_! _'__I+_F". :
n (! n n n

Prﬂﬂf' Let En

~ Then the s€t Q of all rational n

union 18 munmble.

e =] .
U Enis countable, 1.€-
n=1

E. be

If is countable. 22B),

ts such that BcC A (or

Q itse
A is cuuntable;

111. Suppose€ A
: An infinite su
ﬁ If B is an uncountable se

Prﬁof. Let A= {a1,a2,83," " } be a coun
A. We have to prove that B is countable.

and B are twoO infinite se

bset B of a countable set

t, then A is also an uncountable set.
table set and let B be an infinite subset of
From the hypothesis each element of B 1s

some aj-
Let n; be smallest subscript for which @n, € B.

Let ng be the least positive integer such that n2

Then B = {@n,;nz: """ }.
Since the set {ny,n2,n3,"

}nlanda,nzeB,andsonn.

-} is countable, 1.€., B is

..} is countable, {@n;Cn2s""
is countable

countable.
able set

As a corollary see that the set
(because the set of rational numbers in

of all rational numbers).
IV of Rational Numbers, namely set Q of all rational numbers is

can also be proved if we proceed in the following way:
N x N is countable.

of all rational numbers in [0,1)
[0,1] is an :nfinite subset of the count

Property
countable,
First step. We prove that the Cartesian product

Proof. We have N x N = {(a,b)/a,b € N}.
First consider all the ordered pairs (a, b)

such that a+b = 2. There is only one such

pair, namely (1,1).

n i e ¢

All the ordered pairs {
Proceeding in this manmer, all the elements of N x N are written as (1,1), (1

(2,1), (3,1), (2,2), (1, 3=

-‘j."'.

w

Scanned by TapScanner



64 - NALYSIS: DIP
AN INTRODUCTION TO A DI -_.E_Ez.:f
B |

This set contains every ordered pair belonging to N % N,

* Starting from (1, 1), we can enumerate them 48 l
able.

Second step. Let Q* be the set of all p
of all negative rational numbers.

ositive rational numbery g, 0 N
| |

" .
Then, Q = Q* U {0} UQ™ i8 e set of all rational numbers, _.f _“
Let m € Q*. Define f: QY — N = N by the rule \”ﬁT = (119). .

It is easy to see that f is one-to-one and Q* is equivalent to 4 yuby,, f

()
Since N » N is countable, Q% being an infinite subset of N <« N |, oy N K
similar manner Q~ is countable. Hence Q=Q"UV (0} UQ~ is conntnh|e _f_:r.

Note: One may prove that the set Z of all integers is countable, thuyg,
then let (=N) = {=1,-2,-3 _,
poe,

If N is the set of all natural numbers,
we have .
Z = (-N)u {0} UN. 4
|
m:.um ~N is countable, Z is the union of countable sets. Hence, 7. is Count |
e ...L.m._.ﬁ....._-_.—:. A_

Property V of Rational Numbers (Geometric representatioy, of
Ll

numbers)
T

This property asserts that to every rational number there COTTESDO,
7l
H__.._...h

point on a directed line. Is the converse true? Does every point on the ljy,.. _i
a rational number? The answer is no. We shall show that there are ::_._ :..Efi
line which do not represent rational numbers. But before that we explajy, _ 1 oy ty
rational number corresponds to a unique point o1 & directed line, s Ef
We take a directed line—a line in which a direction (positive or nega E
dicated. The positive sense is indicated by an arrow (Fig-2.5.1). Pointg () ) gy
chosen arbitrarily on this line. - _M
_

Then integers { 3
g ...___-._._.-IIM__!IH_ "
equidistant points. 0,1,2,3,--+ } are represented by an endless set

@’ Q |
.=t oA * P

“3 =T otk By LB E  Ps |
q

- ol ]
 a i

q ¢ ‘
Fig 2.5.1 3

F__

&5

IHY, REAL MUMBER BYWTEM
LI ist gy T®) it

,..:ht,h_.h._ :::__& _w :"____ I:.& q are __1_,1._—_ (7 ;
__. the lne OB e :w..\ni nl ..\« J

integer p by the point F om
gth from O w 1)
unl parts, The portion

cHAPTER #

{ A positive

To -.n,_..ni_ﬂ. |
prom) Live

et the

1 hyee 2
p tines  Jiee beer e -

fjrmt repr
of (F
vide the length OF 1o g e
inl T::& (o Lhe “1:.:-, _C‘__ __.-\_T_;.Jk_:_..& t b ﬁﬁathE_ 1

(1 of () represents the negative rational prarntyer
ve integer). Thus ot each ratior

ﬂ.____ﬁ..m pargs oAl
F A uwuu.ﬂh&ﬁtﬂ
(]

urnber |
ales B Ppoive

£ (pis
4 F we A0 B

?__‘ F__:_‘-f._ | edq!
:.._:____,\&._._. “

oint @ on the le "
._:...1__%._..__. and 1 is also A posit]
| -

unigue point on ..__:_I:E,. -
— :i .Mm-:_.-ai_-i the existence of num
[Examples 2hOY ~

< ==

ple u.ak We define /2 as that number z whose square =

L ——— .IJI|.|||||I||II||.I..|.|.1||.IH
- _— —
bers other than __,hla-e,:hl h.:.um.?nﬂ

9. Prove that J2

Exarm
15 not @ rational number.
_ . that
of. (by contradiction) Assume that there exists a rational number x suchi .
Prool. 4 0 and let p. q 8%€ in

F r.\ 2 i L eTs, -._uq
rm B where p, q are Integ .
| between p and ¢ This

2 = 2, Then z is of the fo .
factor other thai

H "
(heir lowest terms, i.e., there is no common
E&:E—uﬂcz can be made without any loss of mn.::ﬁw.:wvr

2 = 2q* which implies that p? is an even integer and

’ 4 .
Then z? = 2 = (£)* =201, P - . >
hence p is an €ven integer (since the square of an odd integer is alway® O )
Let p = 2m. Then p? = 2q* gives (2m)? = 2¢4% or ¢* = 2m*.

. ¢% is an even integer and hence g is cven.

Thus the assumption that z is rational of the form m

p and g have 2 common factor 2, which is contrary to our

factor other than 1. The contradiction proves
number which patisfics z? = 2.

leads to the conclusion that
hypothesis that p and g
that z must not be &

have no cominorn
rational number, i.e., there exists no rational

A more general problem is the following:

other than a square number (like 4,
ional numbers.

il-.______ .
Example 2.5.4. Show that no positive integer 1
(CH 1984, 1989

9, 16, 25, 49, ete.) has a square Toot withan the system € of rat

wﬁﬂuﬂﬂzﬁrﬂ.ﬁﬁﬁﬂ

ational number z satisfying

To prove that 3 no rational number z such t
g are both integers, ¢ # 0

Solution:
non-square positive integer. Suppose to the contrary Jar
P where p and

22 = m. Then such an x can be written as o,

and let p, ¢ are in their lowest terms.
Then 22 = m = Hmuu =m, i.e., p? = maq?.
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66
‘ or T WE can find & positive ing
Corresponding to the positive bk ; ®ga, 67
2 1 <(ntl) i
- n = 9 **{ R 2: THE REAL NUMBER SY5 EM
2 11 ~ :
9 4 <(n+ 1) 1 the Toots of a poly o
or, m < 2.5.6, (Gauss’ theorem on the nature ﬂ.lf ol z+an =0
2 - L] oot T mn— - - 11—
2.2 » p° < {(n+ 1)g} I::xﬂmaple Any ~ational root of the equation T+ 41T i teger), Must be am
ot T8 il < (n+ 1)q quuuhuni;iment.ﬁ ay,az. - »0n OF all integers (n 15 @ positive 1egerl
o C0€ '
on ~F s Lwhtch divides Un exactly. 4
po < q. teger ) (. an
s ng il _ ers, 4 7 V-
ot ¢ ’ et z =& bed root of the equation where p and ¢ ar€ lnii?ng z==FEin the
Wi h.”m“”n:‘n tjheir lml.rist terms (no common factor except 1). Then pu q
& ' re i : _ -1 i
DEXUcONEE 2,2 nd . and multiplying through by ¢"~ ", W€ obtain
o 2,2 —2mnpg + P f cquat®
[’mq__ﬂp) =m{q ’ S n 2 5 p" — pﬂ—l+agp"‘2q+“'+ﬂn—1pq"_2+t1nq"_1'
ﬂm(m@)””pq(‘:(mﬂ S
2 _2mnpq +m(n q° : veral integers
=mp o e ) LHS _p" ig a fraction in its lowest term and RHS is a sum of se S
=1m (p2 —2npg+ 14 ) Fhaee 3 itself 1 ‘nteger. This is not possible unless ¢ = 1 and T =
3¢ § .4, thereforc RHS itself is an integer. .
=m(p— ™ o usly. -
,ltflllltﬁ'neo . nt - ) Ay = 0* 1.€.,
ma — NP 2 ) . = p, an Integer, s a root. So p" +ar1p” 1 L ggp e an-1P
“ ("q_ﬁ?) - _p(p e T app”~® + -+ + Gn-1) = Gn,
p my—"np pis & divisor of an. This proves the theorem. . ot
a - — . . o I o == C
This shows that m is the square of a fraction —=hg"> whose deﬂomjn&t Note: If m is an integer which is not a perfect square, then m e i
1 1 - . ; " " e .
less than g, i.e., E is not in its lowest terms, which is a contradiction to Gurt: P mtinnal root. That 1s, v is not rational. (e.g., \f‘;_’, V3, \/'_5;, etc. ar
The contradiction proves that /1M cannot be a rational number. yDot [See Example 2.5.4 given above)
tive integer and is not a perfect . .
SQuare The notions of boundedness and the completeness properties of real num
he Real Number System R

bers will be discussed under the heading: 4 iy
(Art. 2.7): Axiomatic Approach.

Alt. Solution: Let m be a posi -
find positive integer n such that n? <m < (n+ 1)% 1e, n< ym<n +1 ’30"'@

. v/m cannot be an integer.
If possible, let ym =2,peZ,g€N- {1} and ged (p,q) = 1.
which is not possible as LHS is an integer
Whereaa_l

EXERCISES ON CHAPTER 2: 1IA
(On Rational Numbers)

> 2 2
P ng,, Le.}mq:%—’

is not an integer as ged (p%,q) =1and¢> 1. .. Vm# G € Q.

Example 2.5.5. Show that /23 is not a rational number. 1. Give the value, if any, of the following expressions:

Solution: We have 42 < 23 <52 - 4< /23 <5 .. V23 is not an integer (a) ——I? :8:1:1 when & = 0; (b) sin _}E’ when x = 0.

| [Ans. (a) and (b) Undefine

Let V23 = E.p€Z,geN-{1} and ged (p, q) = 1.

. 23g = Hi; = . .
q = %, which is not possible as LHS is an integer but RHS ;
IS not gp integy 2. For what values of = are the following expressions undefined?
i

for ged (p2, ) = Y, Vv -l
r,q)=1landg>1. - ' 3 i
gl 23+ ';3, 1.e., V23 is not rational. a8
gy 2 S
27 — g2
2
I

Note: One can tr i
y this method to prove th V vV
are not rational numbe e e \/2 \/51 \/5’ ﬂ! !

(d) (z+ 1)(z +2)(z + 3)
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1&[

-(:UL
Note: The twelve properties A1-A4, M1-M4, D1 and 01, 02, 03 make b 'y
R of real numbers an ordered field. 8
Note: We shall often use the following notations:

1. a>bmeansa >bora=>b
2. a<bmeansa<bora=b

It is easy to deduce: a>band b>a<+<= a=b
Note: The following result is often used in proofs in analysis:

Given two real numbers = and y satisfying z <y + ¢, for every € > 0. Thq, "

Justifications: If z > y, then = < y + ¢ is violated for € = =X, because S
r—y =r+y T+
= = < =TI.
rEsETTs 2 2
ence, by the law of trichotomy, we must have z < y.
II. On completeness Axiom of R :
We have discussed in considerable details the two axioms of real number Systen,
=

namely, field arioms and order arioms. These axioms also hold for the System
rational numbers. But there is an additional property to characterise the rea] num},
system—this additional property is known as the completeness property (or Supmmuer
property). It is an essential property of R (not true for the system Q) and thus we Shay]
arrive at the statement.:

R is a complete ordered field.

There are several different ways to describe the completeness property: The |
following results are equivalent to each other and any one can be used as g
completeness property:

1. Dedekind property: Let R be decomposed into non-empty disjoint setsg
A and B such that a€ Aand be B== a < b.
Then either A has the last element or greatest element or B has the first
element or least element.

2. Least upper bound property: Every non-empty subset of R which is
bounded above has the least upper bound or supremum in R.

3. Greatest lower bound property: Every non-empty subset of R which
is bounded below has the greatest lower bound or infimum in R.

4. Cauchy’s criterion: Every Cauchy sequence is convergent.

Principle of monotone convergence: Every bounded monotone se-
quence 1s convergent.

o

77

|APTER 2: THE REAL NUMBER SYSTEM
CH/ ’

R i
6. Nested spheres proper

_______._.—-—-—'—'—"-'
ded spheres

ty: A nest of non-empty closed boun

A - -} > 'LI(JIL H 't
has a non-empty intersec _ . » has a limi
7 Bolzano-Weierstrass property: Every infinite bounded set
. Bo .
point. vering of a closed and bounded sé

8 Heine-Borel property: Every open co

has a finite subcovering.

* Ref: Introduction to Real Variable Theory: Saxena and Shah.

—

: ;
remaining properties.

: ious places
readers will find the discussions of these properties at Vf-lr' Lerl;ting
A curious reader after reading the whole text will find it In

Assumi
to each other. The

of the present text.
1o establish the equivalence of these statements.

Remember: In the present text we shall describe the compl

y of R by assuming that each non-empty bou 2 iy it

t
= Iso known as the LUB-property of R (N

a supremum inR. Itis a

list given above).

of real
We first introduce the notions of upper bound and lower bound of a set

numbers.
Definition 2.7.1. Let S be a non-emply subset of R.

(a) The set S is said to be bounded above if 3 a number b €
re S, x<b. Each such number b is called an upper bound of S.

(b) The set S is said to be bounded below if 3 a number ¢ €
r €S, r > c. Each such number c is called a lower bound of S.

(c) A set S is said to be bounded if it is both bounded above and bounded below.

(d) A set S is said to be unbounded if it is not bounded.

An upper bound b of a set S may or may not belong to S. If it does belong to S,
then b is the largest element of S. But a set S may or may not have a largest element,
even when S is bounded above.

R such that for all

R such that for all

Example 2.7.1. Let S = {z : € R and = < 5}. Then S is bounded above and 5 s
an upper bound of S. The set has no lower bound and hence it is not bounded below. S
is unbounded below (even though it is bounded above).

If a set S has one upper bound b, then it has infinitely many upper bounds—any
number greater than b is an upper bound. Similar observations can be made for lower
bounds. In the set of upper bounds of S and the set of lower bounds of S we look to the
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78 AN INTRODUCTION TO ANALYSIS: DIFFERENT]A CALe,

L
least element and greatest element respectively. They define supremum and ;, )
respectively of S. We call them least upper bound (luIJ]_M and greatest !Dwe:ﬁm‘lm
(glb) m of the set S. We give these definitions more precisely: bou"d
Definition 2.7.2. Let S be a non-empty subset of R.

(a) If S 1s bounded above, then a number M s called a supremum |
bound (lub)| of S if it satisfies the following two conditions:

| M is an upper bound of S, i.e., for allx € S, x < M.

9. No number M" < M is an upper bound of S, i.e., for each e > 0, 3 , "
Em'bﬂ'p

or g Ieﬂst
prer

y € S such that y > M — ¢.

(It is casy to show that there can be only one supremum of a given subset g 2
G, when a supremum exists we refer it to the supremum instead of a "‘“Pmmum_] -

When a supremum M of a set S erxists, we write M = sup S.

(b) If S is bounded below, then a number m is called an infimum [or a greate, lo
bound (glb)] of S if it satisfies the following two conditions:

1. m is a lower bound of S, i.e., for allx € S, x > m.

2. No number m’ > m is a lower bound of S, i.e., for every € > 0, 3 4 Mempe,
y € S such that y < m + e.

mEr

(Here also an infimum, when exists, is unique and we write m = inf S.]

Note: If M’ is an arbitrary upper bound of a non-empty set S, then sup S < M e
sup S is the least of all the upper bounds of S. N
If m' is an arbitrary lower bound of a non-empty set S, then inf S > m/, i.e., inf g :
the greatest of all the lower bounds of S.

It is important to remember that the supremum of a set S may or may not belong ¢,
S. If it does belong to S, then it is the greatest element of S. Similar observations are
noted for the infimum of S.

ITII. The completeness property of R (LUB-axiom of R)

jxﬁTEMENT
1. Every non-empty subset S of real numbers, which is bounded above, has a supre-

mum (or a least upper bound) in R.
This property is called the completeness axiom or LUB-property or supre-

mum property of R. An analogous property can be deduced in the language of
infimum.

2. Every non-empty subset S of real numbers, which is bounded below, has ap
infimum (or a greatest lower bound) in R.

This property is called the GLB-property or infimum property.
Theuren:/%l. GLB-property follows of LUB-property is assumed.

[CH 200g)

To prov h
/ W construct a set S’ of those real numbers T such t
f. e
Proo

79
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S of real numbers, which 18 bounded below.

on: A set .
e the infimum (or GLB) in R.

. S has '
) at —T € 51 1.€.,

S'={I:IER&nd—:{:ES}-

R).
S is bounded below, S has a lower bound k, (say k € )

- —g > K
i; w. if © be any member of S, then —z € S and —r 2
oW,
Ic:-kfnrall:z:ES'. |
& that —k is an upper bound of S',
UB-property on ', i.e., =
reveryz € S,z <

ie., S is bounded above.

«a " ) ’ .‘
This proves supremum M of §' in R.
Hence We can use L

By definition of supremum, We obtain fo

i.e., each member of S >-M.

— ¢ (e is any positive number,

Also 3 at least one member y € S’ such that y > M

no matter how small).

.« means that 3—y € S such that
- (2.7.2)

—y < —M + e

M is the infimum or GLB of &.

ablish that —
(1) and (2) together establish tha o riniE E—

e axioms I, IT and III lead to the assertion: R 18

Note: Th .
fiel - red field.
Q is an important subset of R. We have already shown that Q i1s an orde
That @Q is not complete can be shown by the theorem given below:
| - s lete. [CH 2006]
v%rhegrem 2.7.2. The set Q of rational numbers is not order comp "

give an erample of a non-emp

, statement of the theorem is true if we can
g ! 3 an upper bound) but does

S which is a subset of Q and which 1is bounded above (i.e.,

not have the supremum in Q, i.e., no member of Q is the supremum af 8.

2 ie., S
Such an example is the set S where S = {z : z € Q,z > 0 and 72 < 2}, i

contains those positive rational numbers whose square is less than 2. '
Clearly, S C Q, S # ¢ (- 1 € S§) and S has an upper bound 2. Thus S is a
non-empty subset of @ which is bounded above.
We now assert that no rational number can become supremum of S. If possible, let
k be a rational number which is the supremum of S. Then k > 0 and k € Q. Bﬁ}' the
law of trichotomy, exactly one of the following holds: either k2 < 2 or k? =2or k* > 2.

Scanned by TapScanner



80 AN INTRODUCTION TO ANAMTE=: Ans = SRENTIA
L

(i) If k? < 2, then let us t

Thus we get
0<k<Vy

o\ 2 --k2
4‘*3"‘) I AN

Also
2 —_— — _,_.-—-—‘_"

|
|
3

2 <2
(254
L

Therefore, we have
y>0 and ¥

es k < one element y of S. T,
ref,

(2.7.4) Show that y € S and (2.7.3) impli 4
ur assumption. Therefore, ;2 3 ;’E. l"i_

not the supremum of S—a contradiction t0 O

(ii) If k* = 2, then K is not rational ("’ V2 is not rational). This copg
L ' . 2 :2 rii(lic:.
assumption that & is a rational number. Therefore. K =t 2. %
mber y, where

(iii) If k2 > 2, let us again take a rational nu

443k
Y= 3+2%

5

J
¢
1
%

Then v > U;

'I'E;r.h:'_' i _-

3 . 2
_—— e PV WL S

3+2k
e, O<y<k 21

Also

2 - k? 2 e
L., : :
!J (2L

2 -y = —5 <0,
(3 + 2k)

(2.7.6) shows that y is an upper bound of S and (2.7.5) shows that k is o e

supremum of S.
This is a contradiction to our assumption that & = sup S. Therefore, k° * 2
L " ‘ . " " - ' 1:
None of three possibilities: k* > 2, k? = 2, k* < 2 can hold. Hence our
mee Assu

that sup S is ' ' ’
pS is a rational number is not correct. Therefore. no rational number o

become supremum of 5.

Step 2.

Step 3.
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ve integer

7// property: If z,y € R and z > 0, then there oxists a posit]
imedean Frop y Y - xi
then

4 ! Arch
", such that nz > ¥-
Trivial Cases: Ify<Oorif0<y <7 there is nothing to Prove: because,
pviously Z = ¥ . o.. Archimedean property holds for n = 1. )
0
We, therefore, prove Archimedean property in the form: If , ¥ eR, %, ¥7 0 an
Y then there exists a positive integer 1 such that nr = V-
of. Let A= {nz:n= ., i -
if for all n € N, nz < ¥, then ¥

were not TRUE, 1.€., 1
t A ie,Aisa non-empty set
s=M (say)andMER.

dof A (- Mis the

[ < (m+ 1)% but

Pro
If the Archime

would becom¢ an upper

dean Property
bound of the se
bounded above. Therefore, by lub-axiom, sup A exist

— r is not an upper boun

Since T ~ 0. M-z < M and M
of A), 1.€., M - x < ma, for some positive integer 1, ie, M

+ 1) € A

This means that M
Archimedean property is
‘he Archimedean property
ative proof: Archimedean Property

Jub
ption that

(rm

e our assuin

tradiction. Henc
e n for which nz > ¥»

is not the sup A, a con
NOT TRUE is not correct. So 3 som

is TRUE in R.
Jowing man-

I]it‘

1.4,

Altern can also be deduced 1n the fol
\bounded above.
then by lub-axiom there

e number ¢ such t

would exist &

hat 0 < € < j I
er n such

ner: g i

gtep ls/The set N of all natural numbers is ur
Otherwise, if N were bounded above,
supremum of N = a (say). Choose any positiv
Then by the property of supremum there would exist a natural numb
that n > a—¢ i.e, n+ 1>a+ (1—¢)andso the natural number 7t +1>a

(- 1=¢18 positive). Now n + 1 € N, i.e., 3 a member 7 + 1 of N which is
greater than the supremum of N. This would then contradict the fact that
N is unbounded above.

n such that n > T If this
d of N, contradicting the

a = supN.

N cannot be bounded above. In other words,

Given a positive real number z, 3 a positive integer
were not true, then some I would be an upper boun

result ‘N is unbounded above’ derived in step 1.
positive real numbers such that £ < ¥,
> y (Archimedean property).
pnumber £. Then 3 a positive i

then 3 a positive integer

If r, y are two
n such that nr

Use step 2 fol the

nteger n such that n > K

ornr > y.
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t Iheorem 2.8.1. For eny

Property m.ﬂlﬁluﬁﬁnlqnl!&

We comstruct a set S of all those natl
s=(p peNmdp>7h

Then S# o (. kES)

- by well-ordering property of the set N
A;.:mhiﬂmgnﬁnﬂgﬁhh?

Since » € S, n > r (by construction).

E:lnzigvﬂih.?l:mh.

moalmmwpnﬂunaﬁo_‘:l_vi.

- we finally obtain that for a positive real
such that n — 1 < r < n (unique because 1 I3
Note: .

L The reut o thin theorem can be stated s 113 8 a0y positve

then 3 a non-negative integer denoted by _.l such tha _H_ S e _.J,: |

Zj=n-1).
2 :.Hmwubn_uu.o_Eﬁmunﬂcigﬂgq:mcﬁﬂrﬁcﬁm.np.,

Ta the result of Archimedean property (namely nzr V ¥), put y - i o
natural number. n such that nz > 1 or < z. Since n is a natura] OUmbe,
n.narmunnmv_”_. L Pe m <zl
. 1
Note: When ¢ is any arbitrary positive number 0 < o < € =

Kmrwuumn% property of real numbers .
+ A.If r and y are two real numbers with z < y, then there exists a ratiopy) -

rsuch that z < r < . (CH 1
Observation: Existence of one rational number between = and y implies the eyiq.
of infinitely many rational numbers between r and y. This proves that R is dense it
rational numbers. i
r,\n._.ﬁam of A. Suppose z > 0 and the given condition states that z < ¥, 1e, y- u-._____.
" Therefore (see Note 2 above), 3 a natural number n such that

iu!:in:%_.wrlrfl

number r, 3 a unique von.:f
the least member of S). |

y |
lim i =)
n—og Nt .

i
O0<s<y-=

— — ug
:l
pe AL ML MBER EYFTRM

pa AV
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d.‘&.l.li

ne + | < ny

Now I:rl:nu.uirlii._‘rlh-!u:.liiln:i

m~|lSsnz<m

m< nr ¢+ 1 <ny.
nzrc<cme<nr+]<ny
nr < m < ny
<R <y
rational number r = T lies between r and y

r.y) where D < x < §
0. we can find &

.—..t.-dﬁﬂdt
whenF.

of

ot

Thus the
a rational number in the open interval

n: .Fﬂrh.ﬁ_iuuo!&unt.m.iul!hh

je. 3

(Observatio
;_;!l pumber between £ and y

1 Suppose £ S U < ¥ then by the Archimedean property, = ® i_.”. mtegEr B
with ._p. < y. Clearly, “__.* a rational number, lies in the open _:‘-.i _t._.uu.__ i~
2. Suppose r < Y < 0. Then we can write 0 € ~y < =& (b .e., =¥
positive). So by the previous cases, 3 a rational

rational number —-r € (7, y)
What we observe is that in proving A there is no loss of generality

number r € (—y. —x) and so Whe

10 assume that

r>0and r <y
Remember: Every open mterval (r, y) contams a rational number

(‘.\:. r, y are real numbers with r < y, then there exists an irrational nﬂ% z
uch that r < z < y. Here also we can add the following: CH :..i
Observation: Existence of one irrational number between 1 and y implies the exis-
ence of infinitely many irrational numbers between them. Hence this result proves

that R is dense with irrational numbers.
Note that the results A and B together with the observations stated lead to the

conclusion:

| Real numbers are dense with rational and irrational numbers, i.e., between two
real numbers z and y, 3 infinitely many real numbers. This is known as the

density property of the system R.

Proof of B. If we apply the deunsity property A to real numbers %m and % then we

obtain a rational number r(# 0) such that .mm Er< &

Then z = rv/2 is irrational and satisfies r < z < y.



